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The effects of periodic pulsatile stimuli on a nonlinear limit-cycle oscillation are analyzed for
various relaxation rates to the limit-cycle oscillation. In the infinite relaxation limit, the effects of
periodic stimuli are analyzed by consideration of the bifurcations of circle maps. In the case of a finite
relaxation rate, it is necessary to analyze two-dimensional maps of the disk. However, the simple
structure of the limit cycle allows us to carry out detailed theoretical and numerical analyses of the
dynamics. Using the Brouwer fixed point theorem, we show that for any finite nonzero frequency
and amplitude of the stimulus, there will be a period-1 fixed point associated with a period-1 phase
locking. We use analytical and numerical methods to determine the stability boundary of the period-
1 fixed point as a function of the stimulation frequency, amplitude, and relaxation rate to the limit
cycle. These results, combined with numerical studies give insight into the changes in the global
organization of the phase locking zones as a function of the relaxation rate to the limit cycle.

PACS number(s): 87.22.As, 02.30.Hq, 05.45.+b

I. INTRODUCTION

The periodic forcing of nonlinear oscillators has been
a topic of broad interest to basic scientists, engineers,
and mathematicians [1-10]. Recent years have witnessed
progress in understanding the organization of the zones
of entrainment combining numerical and analytical meth-
ods on simplified theoretical models, and in different ex-
perimental settings [11-20].

Our own interest in periodically forced oscillators
stems from their importance in biology [16]. Exten-
sive experimental and theoretical studies of the effects
of periodic pulsatile stimulation of cardiac oscillators
have demonstrated that to a first approximation, exper-
imental results can be modeled by the iteration of one-
dimensional circle maps g : S — S!. The essential as-
sumptions in deriving this approximation are (i) the os-
cillator is modeled by a limit-cycle attractor; (ii) the time
interval between stimulations is sufficiently long that the
oscillator returns to the limit cycle between stimuli; and
(iii) the stimulation does not change the properties of
the limit cycle. The mathematical analysis of the dy-
namics arising from iteration of one-dimensional circle
maps helps to explain the origin of complex rhythms and
aperiodic rhythms that are experimentally observed dur-
ing periodic stimulation, and gives a good understanding
of the global organization of the dynamics as a function
of stimulus frequency and amplitude [16].

However, recent experimental studies indicate limita-
tions of this approach. For example, if periodic stimuli
are delivered too close together in time, then the trajec-
tory does not return to the limit cycle between stimuli
and a one-dimensional circle map can no longer be ap-
plied to compute the effects of repeated stimulation [21].
Assuming that the limit-cycle oscillation is generated by
a two-dimensional differential equation, then the dynam-
ics will be described by maps of the plane. There is a
broad mathematical literature analyzing the dynamics
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arising from iteration of such maps, including extensive
studies of the problem of periodically forced nonlinear
oscillations [11-15]. Despite these advances, there is still
not a clear understanding of the global organization of
phase locking zones.

Our approach to this problem is to consider dynamics
in what we believe is the simplest theoretical model of a
periodically forced two-dimensional limit-cycle oscillator
[17-20]. This theoretical model, in which the limit-cycle
attractor is a circle in a two-dimensional phase space [9],
has been extensively studied under a variety of names
(radial isochron clock [18], A\-w system [22], Poincaré os-
cillator [10]). In view of the relative obscurity of the first
two names, and the fact that Poincaré was the first to
consider phase planes with this geometry, we prefer the
term Poincaré oscillator.

In Sec. II we introduce the theoretical model and de-
fine terms used to characterize the dynamics. In Sec. III
we summarize the main results found previously for the
“infinite relaxation limit” in which the periodic forcing
is described by one-dimensional circle maps. Sections IV
and V give an analysis of the period-1 fixed point dur-
ing periodic stimulation. Section IV applies the Brouwer
fixed point theorem to prove that for any values of stim-
ulation and frequency there exists a period-1 fixed point
for the Poincaré oscillator, and Section V develops nu-
merical formulas to compute the period-1 fixed points
and evaluate their stability. Section VI gives additional
numerical analysis of the global structure of the dynamics
as a function of the stimulus frequency and amplitude.

II. THE PERIODICALLY FORCED POINCARE
OSCILLATOR-BASIC EQUATIONS
AND DEFINITIONS

The Poincaré oscillator [9, 10, 17, 18] is most conve-
niently written in a radial coordinate system where r is
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the distance from the origin and ¢ is the angular coordi-
nate. The equations are written

—‘Z =kr(l1—r),

dé

—r = 2.
91, (21)

where k is a positive parameter and ¢ is a normalized an-
gular coordinate varying in the interval [0,1) correspond-
ing to [0,27) radians [17,19]. By rescaling the time ¢
and the constant k, we can always make the right hand
side of (2.1) equal to unity without any loss of general-
ity. Starting at any value of r, except for r = 0, there is
an evolution until » = 1. The parameter k£ controls the
relaxation rate to the limit cycle.

We call ¢ = 0 the fiducial point of the cycle associated
with the start of the cycle. We model the stimulation
of the Poincaré oscillator by an instantaneous horizontal
translation by an amount b, Fig. 1. Assume that imme-
diately before stimulus i, we are at a point (r;,¢;). The
stimulus takes us from the point (r;, ¢;) to point (r}, #%),
where

i = [r? 4 b% + 2br; cos (21¢;)]*/2,
ricos (2md;) + b
—_—

T

= ZL arccos (2.2)
T

In computations using Eq. (2.2), in evaluating the arcco-
sine function, we must take 0 < ¢} < 0.5 for 0 < ¢; < 0.5,
and 0.5 < ¢} < 1 for 0.5 < ¢; < 1. Following the stim-
ulus, the equations of motion (2.1) take over, so that by
direct integration, we find that immediately before stim-
ulus (i + 1) delivered at a time 7 after the first stimulus,
we have

rh

Tit1 = (1 —r))exp(—k7) + 1!’
®iv1 =} + 7(mod 1).

FIG. 1. The effect of perturbation of the Poincaré oscilla-
tor. The point (r, ) is sent to point (r’,¢') by the stimulus.
There is a stable limit-cycle attractor at r = 1. We scale
the angular coordinate to lie between 0 and 1, and take the
fiducial point of the cycle as ¢ = 0. The perturbation is a
horizontal translation b.
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The remainder of this paper deals with the properties
of the periodically forced Poincaré oscillator based on
iteration of Eq. (2.3).

Starting from an initial condition (g, ¢o) we generate
the sequence of points (r1,¢1), (r2,$2),.... A periodic
orbit of period n is present if r;1, = r;, $irn = ¢; pro-
vided Titk 7‘—' Ti, ¢i+k ;é b; for1<k<n.

The rotation number, p, gives the average increase in
¢ per iteration. Calling

Ay = ¢ +7 — i, (2.4)
we have
L X
= limsup — A;. 2.5
p = limsup Z (2.5)

=1

Periodic orbits are associated with phase locking. In
n : m phase locking, there is a periodic orbit consisting
of n stimuli and m cycles of the oscillator leading to a
rotation number m/n. For periodically forced oscillators
neither the periodicity nor the rotation number alone is
adequate to characterize the dynamics.

In order to analyze the stability of a periodic orbit of
period n, it is necessary to compute the Jacobian matrix,
M;, defined by

A; B;
Mi = <C1 Dz) )

8¢; 89; _ Or; __ Or;
where A; = 8;, , B; = Br’:‘, C; = 3:;',1, D; = 3,.":1-

The computa.tio‘n of the partial derivatives leads to the
following algebraic expressions:

(2.6)

T2 + br; cos(2me;)

S )
_ b sin(27¢;)

Bi= anrye

C. = —[27br; sin(2me;)]e*T

ril(1 = rie~* + ]2’

[t cos(2mp;)je kT
b= rhekr 42

where (7;, ¢;) are the coordinates of a point of the period
n cycle. During periodic stimulation, the stability of a
periodic cycle of period n is given by the eigenvalues of
the matrix

M:ﬂm.

If the eigenvalues lie within the unit circle then there is
a stable periodic orbit.

(2.7)

III. THE INFINITE RELAXATION LIMIT

There are several papers studying the effects of peri-
odic stimulation of the Poincaré oscillator in the infinite
relaxation limit, k — oo [17-20]. We very briefly review
this work. A schematic diagram illustrating some of the
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main phase locking regions is shown in Fig. 2 adapted
from Refs. [17,19).

In the infinite relaxation limit, the dynamics are de-
scribed by a one-dimensional circle map g : §* — S?,

biv1=g(¢:) +7 (3.1)

that is found from Eq. (2.3) by taking the limit £ — oo.
The topological degree of a circle map counts the number
of times the map winds around the circle as the variable
goes around the circle once. For 0 < b < 1 the map
is of topological degree 1 and for 1 < b, the map is of
topological degree 0. The bifurcations that are displayed
by this problem are consequently typical of bifurcations
that are found in studies of the bifurcations in circle maps
with two parameters. There are complications, however,
associated with the joining of the zones where the map
changes its topological degree near b = 1.

0 < b < 1. The map is an invertible diffeomorphism of
the circle. An Arnold tongue of rotation number m/n of
a circle map is defined as the union of values in parameter
space for which there exists periodic solution with rota-
tion number m/n [7, 8]. For invertible diffeomorphisms
of the circle, the case initially considered by Arnold, for
a fixed set of parameters, all initial conditions have the
same rotation number. Moreover, if there is n : m phase
locking for 7 and n’ : m’ phase locking for 7/, then there
exists a value 7*, 7 < 7* < 7/, leading ton+n' : m +m/
phase locking. Usually, the range of values of 7 associated
with a given Arnold tongue covers an open interval in pa-
rameter space. If the rotation number is rational, there
is phase locking, and if the rotation number is irrational
there is quasiperiodicity. The organization of phase lock-
ing zones for 0 < b < 1 shown in Fig. 2 is typical, and is

2.5
20
1:0 1:1
15 21
2 2:2
b 30 3:3
10 N\
31 3:2
05
0.0 : 1 . L 1 .
0.00 0.25 0.50 0.75 1.00
FIG. 2. The parameter space in the infinite relaxation

k — oo limit showing the different phase locking zones. Mod-
ified from (17, 19].
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called the classic Arnold tongue structure. The periodic
orbits lose stability via a tangent bifurcation.

1 < b. The map now has two local extrema. For
any set of parameter values there is no longer necessarily
a unique attractor. It is possible to have bistability in
which there exist two stable attractors for a given set of
parameter values. The attractors are either periodic or
chaotic. A superstable cycle is a cycle containing a local
extremum. Such cycles are guaranteed to be stable. One
way to get a good geometric picture of the structure of
the zones is to plot the locus of the superstable cycles
in the parameter space [19]. As b decreases in this zone,
new phase locking zones arise; however, almost all these
zones disappear into the discontinuities of the circle map
atb=1.

In previous work [19] the intersection of the Arnold
tongues with the line b = 1 was considered. Numerical
studies showed that the intersection points of the Arnold
tongues with the line b6 = 1 were accumulation points
of superstable orbits. It was proven that the endpoint
of a period k phase locked region is the terminus of a
period j superstable orbits for every j > k. Therefore,
the junctions of the Arnold tongues with the line b = 1
represent accumulation points of an infinite number of
phase locking zones. For example, the point in Fig. 2 at
b =1, 7 = 0.25, is an accumulation point of an infinite
number of superstable cycles including superstable cycles
originating at the right boundary of the the intersection
of the 5:1, 4:1, 3:1, 2:1 Arnold tongues with the line b = 1,
see Fig. 5(a) in [19].

The accumulation points of stable phase locking zones
at the intersection of the Arnold tongues with the line b =
1 are subtle geometrical features of the structure of the
phase locking regions in the periodic forcing amplitude
and frequency parameter space that are easily missed in
numerical studies. We are not aware of similar features in
other theoretical models of periodically forced oscillators.
For Eq. (2.3) with the relaxation rate k very large but
finite, the geometry must be very similar to the k — oo
limit. A conjecture on the way the geometry for the
k — oo limit, Fig. 2, changes (continuously) for k large
but finite is presented in Sec. VI.

The period-1 cycle (fixed point) loses stability by a pe-
riod doubling bifurcation for 1 < b < 2. In this problem
there can be changes in the rotation number without a
change in periodicity [17]. Thus for 2 < b, there is a
change from 1:0 phase locking to 1:1 phase locking along
the line 7 = 0.5.

In the infinite relaxation limit there are important
symmetry relations that are evident in Fig. 2. These
symmetry relations are derived in [17], which should be
consulted for details.

Symmetry 1. Assume that there is a stable period-n
cycle with fixed points ¢g,¢1,...,¢n_1 for 7 = 0.5 —
0, 0 < 6 < 0.5, associated with n : m phase locking.
Then for 7 = 0.5+ 4, there will be a stable cycle of period
n associated with an n : n — m phase locking ratio. The
n fixed points are vg,%1,...,%n_1 where ¥; =1 — ¢;.

Symmetry 2. Assume that there is a stable period-
n cycle with fixed points are ¢g,d1,...,¢n_1 for 7 =
4, 0 < § < 1.0, associated with n : m phase locking.
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T = §+k, where k is a positive integer, there will be a sta-
ble cycle of period n associated with an n : m +nk phase
locking ratio. The n fixed points are g, %1,...,¥n_1
where ¥; = ¢;.

Symmetry 1 is satisfied in Fig. 2. Using the transla-
tional symmetry, symmetry 2, the zones in Fig. 2 can be
expanded to cover the region 7 > 1.

IV. EXISTENCE PROOF
FOR PERIOD-1 CYCLE

The Brouwer fized point theorem [23] states that any
continuous function f of the closed disk D® C R™ into
itself must have a fixed point; that is, f(z) = = for some
T € D™,

In the current case, the two-dimensional map, given
by Egs. (2.2) and (2.3) is generated by integration of
continuous differential equations, so that continuity of
the map is ensured.

Consider a disk D of radius R,, in the two-dimensional
phase space centered at the origin, Fig. 3(a). The pertur-
bation leads to a horizontal displacement of each point
in D by b, leading to D’, Fig. 3(b). If the disk is of
radius R,,, then the point (R,,,0) suffers the furthest

(a)

(b)

©

D

f)

FIG. 3. Schematic diagram showing application of the
Brouwer fixed point theorem to prove existence of a period-1
fixed point illustrated for the case b = 0.8,k = 1.0,7 = 0.3.
(a) The initial disk D of radius R, ~ 1.86, centered at the
origin. (b) D is mapped to a new disk D’ by the perturbation
of a horizontal translation b. (c) After time 7 has elapsed, D
evolves to f(D), where f(D) € D.
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displacement from D under the stimulation. However,
a simple computation lets us determine the value of R,,
that guarantees that D maps into itself. We use Eq. (2.3)
to compute the evolution of (R,,,0) following a horizon-
tal perturbation b after a time 7. For any given values of
b,k, and 7, D will be mapped into itself provided

[1-b| 1\/ s 4b
2 +2 (1-8) +1—e""’

where Ryt is the minimum radius such that f(D) €
D, where f represents the two-dimensional map in (2.3).
Figure 3(c) shows the situation that prevails with b = 0.8,
k = 1.0, 7 = 0.3 yielding R.,it =~ 1.86. Since D maps into
itself, the Brouwer fixed point theorem is applicable. We
therefore have proven the following theorem.

Theorem. For the 2 dimensional Poincaré oscillator,
Eq. (2.1), subjected to a periodic pulsatile stimulus, there
will be a period-1 cycle for any amplitude or frequency of
the periodic forcing.

This represents an important difference from the infi-
nite relaxation limit in Sec. IIL. In the infinite relaxation
limit, for 0 < b < 1, inside the Arnold tongues associated
with n : m locking with n > 1, there is not a fixed point
of period-1. Notice, however, that the period-1 cycle that
must exist in the finite relaxation limit is not necessarily
stable.

Although, this result has been derived for the partic-
ular case of the periodically forced Poincaré oscillator,
it will likewise be applicable for periodic forcing of any
limit cycle oscillation in finite dimensions provided the
magnitude of the inward flow towards the limit cycle
contained in D™ grows sufficiently rapidly as the disk
radius increases. In the same way, excitable (nonoscillat-
ing) systems [9, 10] subjected to periodic forcing should
also display period-1 cycles, if similar restrictions apply
to the vector field. Because of its broad implications in a
variety of systems, this result is one of the main findings
of the current paper.

Ry > Reie = (41)

V. ANALYSIS OF 1:M LOCKING
A. Computation of the fixed point

A fixed point (79, ¢o) in Eq. (2.3) corresponds toa 1:
m locking rhythm, where, using Eq. (2.4), m = Aq. This
section shows how the fixed points and their stability
can be determined numerically. Figure 4 shows a typical
situation associated with a fixed point. We call the fixed
point (ro,¢0). Under the perturbation b this point is
mapped to the point (r',¢’) where ¢’ = ¢o — 7. Using
the law of sines, we calculate

sin(2mgo) _ sin(2n7) _ sin[27(do — 7))
r! - b - To )

We develop a transcendental equation to solve for ¢g.

From Egs. (2.3) and (5.1), we compute

B r’ _ b sin[27(po — 7)]
T (L—r)e kT 4 sin(27T)

Substituting, for r’ from Eq. (5.1), we can equate the

(5.1)

To (5.2)
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b

FIG. 4. Schematic diagram showing the geometry under-
lying the computation of the period-1 fixed point.

two equivalent expressions for r¢ in Eq. (5.2) to obtain
the equation
sin?(2m7)

b sin[2n(¢o — 7)] = (e g )COt(27f¢o)

(1 — e * cos(27T)
+

—kT

T ok ) sin(277),
(5.3)

where the only roots of interest lie in the range 0 < ¢p <
0.5 for 0 < 7 (mod 1) < 0.5 and 0.5 < ¢g < 1 for 0.5 <
7 (mod 1) < 1. From the mean value theorem, at least
one solution of this equation will always exist for any
values of b,k,7. For large values of the product of kT,
one solution will always be found in the neighborhood of
singular values of the cotangent function at ¢p = 0 or
¢o = 0.5. Once ¢ is determined, we can compute rg
using Eq. (5.1).

B. Stability of the fixed point

The computation of the stability of the fixed point fol-
lows from the definition of the Jacobian matrix in Sec.

I Calling
Ly = (4 + Bi)l(ro,40) »
L; = (AiD; — B;Ci)|(,, 40
from (2.6), we find that
Ly = Scos2n7(1 + Se~*7),
Ly =S3%*

where S = ro/7’.
The eigenvalues are found by solving the equation

M —Lix+L;=0. (5.5)

Solving this equation for A we compute

A= i(_l_{_:_e_kf) [cos(27r'r) +4/y% - sin2(21r'r)] ,

(5.6)

(5.4)

where
1— Se~*r

y= 1+Se—k‘r'

C. Infinite relaxation limit

The stability of the period-1 solution for the infinite
relaxation limit £ — oo, has been given in previous pa-
pers [17, 18, 20]. The boundaries also follow as a special
case from the formulas developed for the two-dimensional
case. For completeness, we summarize these results (with
some simplifications), and refer the reader to earlier pa-
pers for more details.

In the strong relaxation limit we have ro = 1. For
0 < b < 1 the stability is lost by a tangent bifurcation
for which %ﬁ—‘- = 1. This implies that at the boundary
we have

b+ cos(2m¢e) = 0,
from which we compute
b =| sin(277) | . (5.7)

The fixed point at the stability boundary is at
1 1
¢0=T+Z, for 0<7< 7
and
¢o=‘r+§, for §<‘r<1.

For 1 < b < 2 stability of the period-1 fixed point is lost
by a period doubling bifurcation for which 23—;% = —1.
From this we compute that at the boundary we have

2 + b + 3bcos(2mdo) = 0.

Carrying through the trigonometry we find the stability
boundary

b= 4/4 - 3sin®(277).

The fixed point at the boundary is given by

(5.8)

L [a—p2

o = +1s'_
0O=TT g 3b2

D. Weak relaxation limit

In the weak relaxation limit, £ — 0, and we find r¢ =

r', § =1, y=0. For this case there is a solution

¢0 =0.25 + T/2,
b

0= -
2sin7wT

(5.9)

for 0 < 7(mod 1) < 1.0. The eigenvalues for this solution
are

A = e¥2miT, (5.10)
Since the eigenvalues in the limit £ — 0 lie on the unit
circle, it is necessary to analyze the stability by consider-
ing the power expansion of the modulus as kK — 0. When
the eigenvalues are complex conjugates, the modulus is
equal to Lz in (5.4). From (5.2) and (5.4) we find that
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1—kr
1-3kr(1—7)
~ 142kt —3krr' +---.

Ly = (ro/r")} e % ~

(5.11)

Therefore, if 7' > % the period-1 solution is stable.
Otherwise it is unstable. From (5.9) we now compute
that the period-1 solution is stable if

4
b> 3 sin 7. (5.12)

2.5

(a)

1:0 1:1

2:0 ' 22

1.0 [
3:1 32

05 I

0.0
0.00 0.25 0.50 0.75 1.00

25

(b)

20

2:0 |—2:2
2:1

/ 33

1.5

\ || /

32

0.5

0.00 0.25 0.50 0.75 1.00

FIG. 5. (a) Numerical computation of the phase locking
zones for k = 10. (b) Numerical computation of the phase
locking zones for k = 1.

LEON GLASS AND JIONG SUN 50

VI. NUMERICAL STUDIES

Given the initial condition (r¢, ¢), Egs. (2.2) and
(2.3) were iterated to generate the sequence (71, ¢1), (72,
$2), ..., (Tn, ¢n). Periodic cycles were determined af-
ter allowing a sufficiently long transient that asymptotic
behavior is achieved. The boundaries of the different
locking zones are automatically detected. The computa-
tions were carried out on a SunSparc Workstation using
double precision.

One of the numerical difficulties in these computations
is the effect of initial conditions. For some parameter
values the rhythm is not uniquely determined but de-
pends on the initial conditions. For example, at k = 10,
b = 1.08, and 7 = 0.306 we have found two different
stable rhythms. For ro = 0.91, ¢9 = 0.45, the rhythm
evolves to a 1:0 rhythm, while for 7o = 1.0, ¢ = 0.3, the
rhythm evolves to a 3:0 rhythm. In numerical studies in
the infinite relaxation limit it is possible to track super-
stable orbits, and in this way demonstrate rich bistability
for b > 1 [19]. In the finite relaxation limit we do not
know of an analogous numerical trick. In view of the
extremely small basins of attraction expected for some
of the locking zones, and the expected complex topology
of these multistable zones, we have not carried out a de-
tailed numerical study of multistability. In this study,
we arbitrarily fixed the initial condition to be 7y = 1.0
and ¢¢ = 0.3. Since we expect multistability, diagrams of
phase locking zones assuming a different initial condition
would show differences, but these do not affect the major
conclusions of the current analysis.

Figure 5 shows the phase locking zones for £ = 10 and
k = 1. These should be compared with the & — oo di-
agram in Fig. 2 [19]. With finite relaxation, the phase
locking zones become narrower in size. For example the
2:1 phase locking zone shrinks dramatically when k be-
comes small. The reflection symmetry around 7 = 0.5 is

2.0
)
o
L o
b o
o
L o
1.5 °
o o
3 [s]
k=co 1
1.0 |
oo’ k—0
05 Eﬁfn; 0 ka1
g2 O k=10
0.0 n 1 " 1 " ] L 1
0.0 0.1 0.2 0.3 0.4 0.5
T
FIG. 6. Period-1 boundary for several values of k. The

results for k — oo and k — 0 are based on the analytical
formula in the text, and the values for k = 10 and & = 1 are
based on the numerical computations.
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(a) ®)

1:0 1:0

10 — 10 —
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FIG. 7. (a) Schematic dia-
gram of the geometry in the
neighborhood of the point b =
1, 7 = 0.25 for the infinite re-
laxation limit £k — oo . Based
on results in [17,19]. (b) Con-
jectured diagram of the geome-
try in the neighborhood of the
point b = 1, 7 = 0.25 for k
large but finite. Similar ge-
ometries should be observed in
the neighborhood of the inter-
section of each Arnold tongue

0.25 0.25

lost for positive finite k but is reestablished in the £ — 0
limit.

We now turn to delicate questions concerning the 1:0
boundary. In Fig. 6, we plot the 1:0 boundaries for
k—0,k=1, k=10, and kK — oco. The boundaries are
obtained from theoretical formula for £ — oo [Egs. (5.7)
and (5.8)], and k — 0 [Eq. (5.12)]. The boundaries are
obtained numerically for £k = 1 and k = 10.

For k — oo the nature of the bifurcation on the bound-
ary is understood. For 0 < b < 1, 0 < 7 < 0.25 there is
a tangent bifurcation, and for 1 < b < 2, 0.25 < 7 < 0.5,
there is a period doubling boundary, see Sec. V C. The
point b = 1, + = 0.25 is a singular point that repre-
sents the intersection of the 1:0 locking zone with the
line b = 1. As discussed in Sec. III, this point is an
accumulation point of an infinite number of superstable
cycles. This is represented schematically in Fig. 7(a).

We now consider the way this geometry is modified
in the finite k limit. We determine the period-1 orbit
numerically and evaluate the eigenvalues to analyze the
loss of stability for fixed b as T increases, Fig. 8. The loss
of stability is through a Hopf bifurcation (two complex
eigenvalues lie on the unit circle) or a period doubling
bifurcation (both eigenvalues are real and one is equal to
-1). As b increases over the range of parameter values
that lead to the Hopf bifurcation, the eigenvalues tra-
verse the unit circle. We call the angular coordinate of
the eigenvalues in the complex plane, 0y, where ), = 0
corresponds to both eigenvalues equal to 1, and 65 = 0.5
corresponds to both eigenvalues equal to -1 (see the in-
set in Fig. 8). Our numerical studies indicate that at
b = 0 both eigenvalues lie at 85, = 0. These traverse
the unit circle as b increases until there is a period dou-
bling bifurcation for bmax(k), Fig. 8. This picture sug-
gests that the accumulation point of superstable cycles at

= 1,7 = 0.25 is destroyed in a natural way for k large
but finite to yield the generic picture of Arnold tongues
in two-dimensional maps. Figure 7(b) is a conjectured
organization of the locking zones near b = 1, 7 = 0.25
for finite large k. This should be compared with Fig.
153 in [7]. We conjecture that the geometry in Fig. 7(b)
is repeated at the intersections of other Arnold tongues

with the line b = 1.

with b = 1 for k large but finite. As k further decreases
the cusps smooth out and the locking zones continuously
evolve to the k — 0 limit, Fig. 5(b). Intermediate stages
are superficially similar to reported organization of lock-
ing zones in many other articles.

VII. DISCUSSION

The current paper has considered dynamics in a theo-
retical model of a periodically forced limit-cycle oscilla-
tion as a function of both the frequency and amplitude
of the periodic forcing. The equation is probably the
simplest imaginable displaying a stable limit cycle, and
dates back to Poincaré. The equation, or simple variants
of it, has been independently proposed by many differ-
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FIG. 8. The locus of the eigenvalues at the loss of stabil-

ity of the period-1 orbit as a function of b. Computed from
numerical solution of the transcendental equation (5.3) to de-
termine the fixed point, and evaluation of (5.5) to evaluate
the eigenvalues. For 0 < b < bmax(k) the eigenvalues lie on
the unit circle, and stability is lost via a Hopf bifurcation.
The location of the eigenvalues on the unit circle is given by
0 as shown in the inset. For b > bnax(k) stability is lost via
a period doubling bifurcation so that at the instability one
eigenvalue is -1. For £k —» 0, k = 1, k = 10, kK — oo, re-
spectively, the values of bmax(k) are 4/3, ~ 1.32, =~ 1.12, 1.0,
respectively.
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ent investigators, sometimes unaware of earlier research
[17-20]. This prototypical example captures many ba-
sic properities of periodically forced limit-cycle oscilla-
tions and as such it deserves to be better known and
appreciated. Previous studies examined dynamics of this
equation in a limit of strong relaxation, in which the tra-
jectories are attracted to the limit cycle infinitely fast
[17-20]. We are not aware of studies involving the finite
relaxation limit.

For any stimulation frequency and amplitude there ex-
ists a period-1 fixed point. This has important implica-
tions for our understanding of Arnold tongues for period-
ically forced two-dimensional limit-cycle oscillators. The
lack of uniqueness of rotation number inside the Arnold
tongue, even for small amplitude forcing is a novel feature
in this, and undoubtedly many other systems.

Because of the simplicity of the model, analytic results
concerning the stability of the period-1 boundary have

been possible. However, there remain a large number of
additional questions that have not been addressed. For
example, is the Hopf bifurcation subcritical or supercrit-
ical along the period-1 boundary? More difficult ques-
tions involve the global organization of the locking zones
for finite k. We have conjectured that singular accumu-
lation points of superstable cycles in the £ — oo limit
are destroyed in a natural way for finite k. However, the
detailed evolution of the global organization of locking
zones as k decreases is still not clear.
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FIG. 3. Schematic diagram showing application of the
Brouwer fixed point theorem to prove existence of a period-1
fixed point illustrated for the case b = 0.8,k = 1.0,7 = 0.3.
(a) The initial disk D of radius R, = 1.86, centered at the
origin. (b) D is mapped to a new disk D' by the perturbation
of a horizontal translation b. (c) After time 7 has elapsed, D
evolves to f(D), where f(D) € D.



